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Abstract

Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-

pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon

fields results for large coupling constants into an effective Hamiltonian which separates into

a one describing a scalar field and another one for a field with spin two. The ground state is

dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color

zero and spin two pairs. As color group we used SU(2).

1 Introduction

In this contribution we report on a possible non- perturbative treatment of Quantum- Chromo-

Dynamics (QCD). As the color group we use SU(2). We further restrict to gluons only because

due to their larger color charge, compared to quarks and anti- quarks, they will dominate at low

energy , e.g., in the vacuum state. As has been indicated by several previous contributions [1, 2]

the coupling to color I and spin zero pairs are dominating the low energy structure of QCD, at

least in perturbative calculations. This leads to assume that pair correlati6ns play an important

role in the lowest energy state (the vacuum) and that boson mapping techniques may help to

make more transparent the physical structure. Combined with many body techniques of nuclear

physics this can represent a possibility to solve non-perturbatively QCD. The method presented

in this contribution can, e.g., be applied to the Hamiltonian as proposed in ref. [3]. There the

complete Hilbert space in a finite universe (radius of several fm) is mapped to a model space of

constants modes only. The non- constant modes are taken perturbatively into account, leading to

renormalized interaction constants.

In section 2 we discuss the boson mapping after having introduced the Hamiltonian of constant

modes. Furthermore, we give the result of the mapped' effective Hamiltonian in the limit of

large coupling constant g. Finally in section 3 conclusions are given and future applications are

mentioned.
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2 A Boson Mapping of Pair Fields

Confinement properties of QCD are considered to be related to the infrared limit (large wave

lengths) of the QCD. Therefore, in order to get a first idea one may just restrict to constant

modes of gluons, i.e. the vector fields Ai_ are approximated by constant fields denoted by c_,.

Here i is the space and a the color index, both ranging from 1 to 3 (in SU(2)- color the gluons are

in the color T=I representation). With this the Hamiltonian of gluonic QCD aquires the form[4]

• ii

where g is the coupling constant. If the non constant modes are included perturbatively higher

terms will appear but the general pair structure, pairwise coupling to color zero (contraction over

the indices a or b), remains. In equ. (1), having contracted over the color index, only spin zero

and two pairs appear and therefore suggests to apply a boson mapping to the paired expressions.

One often redefines C;a _ g-_C_ which as a result produces an overall factor g_ in front of the

Hamiltonian.

Normally boson mappings are related to boson creation and annihilation operators. For an

excellent review see ref.[5]. One distinguishes between two types of boson mappings: (i) the Dyson

(D) and the (ii) Holstein- Primakoff mapping (HP). The first one results into a non- hermitian

Hamiltonian and the latter into a hermitian one. Both are equivalent and the problem is well

defined but of course the HP gives a more pleasent hermitian structure of the Hamiltonian. Instead

of using boson creatidn and annihilation operators we will use coordinate_ Ci, and derivatives

pi_ _ _ (for convnience we will use cartesian components, i.e. p,a _ Pia). The reason for this
-- OCia

is the more simpler and transparent structure of the Hamiltonian which would be very complicate

in terms of the creation and annihilation operators. First we will give the Dyson mapping which is

completely analog to the one using creation and annihilation operators. Then we go from there to

the HP mapping which will be very different to the one in terms of creation and annihilation

operators!

The boson- pair mapping is given by

(Y_CioCj_)D = qij
Q

1 _-'_(Pk'iqk'kPkj + Pkiq_-k'Pk'i) -- Pi_
(Y_ Pia Pj,, )D = -2 k,k'

3 36..
(__. Ci,,Pj_ + _6ij)D = ___ qikPkj + 2 "

a k

(2)

with

[P,.i, q,-,,]- 5i,,Sj,, -4-6,,_6j,_ (3)

In equation (2) the index D refers to "Dyson mapping". As can be seen the pair of derivatives

does not preserve their hermitian structure under the D- mapping. Also the operator in the last

line, which is introduced in order to obtain a closed algebra and is anti- hermitian in the original
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space, does also not preserve the anti- hermitian property in the mapped space. The qij and PO

are not yet normalized as can be seen from equ. (3).

That the hermitian properties are not preserved has to do with an additional assumption,

namely that the volume element is of the simple form dq (=l'Ii__.j qij)" However, if one assumes

a more complicate volume element dqK2(q) (in the argument of K the notation q refers to the

dependence on all qij) we can choose then K(q) such that all hermitian properties are conserved.

In order to recover the simple volume element we have to redefine all operators of equ. (2) (denoted

now collectively by 0) and the wave functions • by

(O)up = K(q)(O)uK-'(q)

(_).p = lf(q)(_b)D (4)

where the index HP inow refers to the Holstein- Primakoff mapping.
The difference to the HP mapping using creation and annihilation operators becomes obvious

when one remembers that in the latter the K is an operator depending on the Casimir operators

of the unitary group U(3)[5, 6] (the generators are given in the last line of equ. (2) when C_ is

substituted by a creation and Pi_ by an annihilation operator) while in our proposal the K is a

function in the coordinates qij only. The equivalent in the other case would be a function in pairs

of creation operators. Besides this essential difference the HP mapping results always into a non-

polynomial function in the operators, except this does not represent a difficulty when we deal with

coordinates. Even if the function K is complicate we always can integrate numerically!

In order to determine the function K we require that the anti- hermitian property of (_= Ci°Pi,,
3

+ 7Sij) is preserved, i.e.

(K(q)(E Ci=Pj_ + _Sij)oK-'(q)) t = -/f(q)(E C,_Pj_ + _50)DK-'(q) (5)
O (2

which results into the condition

__,(qikpkiK(q)) = --_If(q)
ik

__,(qikpkiK(q))
k

= o ,fo,- i # j (6)

This implies that K(q) is a spin scalar and K -4 a sum of monomials of order 3 (note that

_]ik(qikPkiq,-,) = 2q,_).

Because of lack of space we cannot go into details here but merely give a rough description

of the results. The detailed analysis is given elsewhere[7]. The K(q) is a function in the pair

coordinates qlj. Instead of using decoupled indices we can introduce coordinates of a given spin,

i.e. q_ with I = 0,2. The exact dependence is obtained by using a linear combination of all

possible monomials of order three with total spin zero. After that we made a change of variables

by transforming q_] to an intrinsic system very similar to what is done in the collective model

of a nucleus where one transforms from the deformation quadrupole coordinate (which has also

angular momentum 2) to a system where the quadrupole operator is diagonal[8]. Also here appear

109



some kind of "deformation" coordinates fl and 7. The physical interpretation is that they describe

the deformation (distribution) of the wave function in coordinate space. Also we have transformed

the coordinate q[01 to x/2q0[°l = q + v/2flcos(7 + _). With this we obtain the final expression of the

exact mapping of the Hamiltonian. However, this expression appears complicate at first sight. It

gets more transparent when one developes around the minimum values of the potential. One finds

that in lowest order the Hamiltonian can be separated in a sum of a pure q and q_l dependent

part:

/_/q -4 2 g3 + + q
-_qqq_qq _qq 2

{fd _L_d110, 1}/:/Z = 2v_g] - _ × dq[2lm + fl_[4cos2('y + -_) + _] (7)

where the square bracket with the cross (x) inbetween means standart angular momentum couling.

This result is only a good approximation when the coupling constant is large! Nevertheless we

can construct a basis of functions with which we can also diagonalize the general expression. The

interesting part of the above result is that we have a Hamiltonian in q which has a minimum in

its potential for values of q :fi 0! This has as a consequence that the ground state will contain a

q-condensate. The Hamiltonian in _ is just an anharmonic oscillator, i.e., the ground state will

contain small admixtures in the spin two pair. Within a rough approximation, and taking into

account the relation of q with q[0°] and fl, % we can state that within the model of constant modes

in QCD the vacuum state is dominated by a spin and color zero condensate.

3 Conclusions

We have applied a boson mapping technique to the model of constant modes of QCD. Instead of

using creation and annihilation operators we used coordinates and derivatives. The non- hermitian

Dyson mapping works very similar to the standart boson mapping[5, 6]. However, going from there

to the Holstein- Primakoff mapping is quite different! The mapped Hamiltonian of the model of

constant modes separates for large coupling constant into a part depending on q (essential the

spin and color zero gluon pair) and the other depending on the color zero and spin two gluon

pair. The spin zero part shows a minimum in the potential at values different from zero and

thus produces a spin and color zero condensate for the vacuum state. The spin two part is an

anharmonic oscillator and indicates slight admixtures of those bosons to the vacuum state. For

large coupling constant the namiltonian separates into a sum of a pure (q,p) and a pure (q_l,p_l)

depending part.

The model used is of course very simple. Nevertheless, using the more realistic Hamiltonian

of ref.[3] the principal qualitative results will not change. This contribution has to be seen as a

further step towards the non- perturbative description of QCD. The detailed analysis of the results

presented here are given in ref.[7].
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